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Appendix A

Non-dimensionlizing Fluid Dynamic
Variables

There are three fundamental units to describe physical quantities. These
three units can be chosen as the units of length, time, and mass. Fluid
dynamic equations can be represented in different unit system. Many text
books present how to non-dimensionlize the fluid dynamic equations. But
most times, the fundamental reasons for these choices are not given. For
example, theoretically we can only use three fundamental units or indepen-
dent flow variables to non-dimensionlize a physical system, but it seems
that there are more than three independent quantities used in the non-
dimensionlization of the fluid dynamic variables. Here, we will present
how to non-dimensionlize fluid dynamic variables through a fundamental
analysis.

For any fluid system, such as the NS or the Boltzmann equation, all
physical quantities are measured in units. There are only three funda-
mental units as references to define a unit system. The equations can be
considered as a physical law in such a unit frame. Different choices of
units are equivalent to a transformation between different frames. Non-
dimensionlization is not to make the physical quantity be dimensionless,
but to take an appropriate unit system, where the equations related to the
flow problem can be described conveniently.

Now let’s consider a physical system described in two unit frames
(l0, t0, m0) and (l1, t1, m1), such as l0 = 1m and l1 = 1mm. Since in
both unit frames, the same physical quantities are measured, where the
measured length, time, and mass are given by

x(l0) = x∗(l1), t(t0) = t∗(t1), m(m0) = m∗(m1),

where the “times” is used between the value and unit. Here the values
x, x∗, t, t∗, m and m∗ are purely numbers, and the units are included in
(l0, t0, m0) and (l1, t1, m1). Then, with the above connection, the specific
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values of length, time, and mass can be transformed from one unit frame
to another one,

x = x∗

(
l1
l0

)
, t = t∗

(
t1
t0

)
, m = m∗

(
m1

m0

)
.

Now let’s study the transformation of flow variables between two unit
frames. In the unit frame (0), the values of density, velocity and length can
be expressed as ρ∞, u∞ and l∞. Note that they are purely numbers in unit
frame (0). In the unit frame (1), these numbers will be changed to (ρ̂, û, l̂)
with the connections,

ρ∞

(
m0

l30

)
= ρ̂

(
m1

l31

)
, u∞

(
l0
t0

)
= û

(
l1
t1

)
, l∞(l0) = l̂(l1).

Obviously, for convenience, we can choose the units of unit frame (1) to
have ρ̂ = û = l̂ = 1. With the above requirement, i.e., any inflow condition
around a flying vehicle becomes the same in frame (1), the connections
between different unit frames are

l1 = l∞l0, t1 =
l∞
u∞

t0, m1 = ρ∞l3∞m0.

These are the basic rules to define the units for frame (1).
With the above choices, the values to describe the same length, time,

and mass between two frames are connected by

x = l∞x∗, t =
l∞
u∞

t∗, m = ρ∞l3∞m∗.

Then, the values of flow variables can be changed from one unit system (0)
to another one (1), such as

ρ

(
m0

l30

)
= ρ∗

(
m1

l31

)
, p

(
m0

l0t20

)
= p∗

(
m1

l1t21

)
, u

(
l0
t0

)
= u∗

(
l1
t1

)
,

from which we have

ρ∗ =
ρ

ρ∞
, p∗ =

p

ρ∞u2∞
, u∗ =

u

u∞
.

Note that (ρ, p, u) and (ρ∗, p∗, u∗) are purely numbers in unit frames (0)
and (1).

In terms of the dynamical viscosity coefficient, we have

µ

(
m0

l0t0

)
= µ∗

(
m1

l1t1

)
,

and

µ∗ =
µ

ρ∞l∞u∞
.
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In unit frame (0), for a specific viscosity coefficient, such as the incoming
flow with µ∞, the value of corresponding viscosity coefficient in unit frame
(1) becomes

µ∞,∗ =
µ∞

ρ∞l∞u∞
=

1
Re

,

where Re = ρ∞l∞u∞/µ∞. Then, for any other viscosity coefficient µ in
unit frame (0), in frame (1) it becomes

µ∗ =
1

Re

(
µ

µ∞

)
.

Similarly, the particle collision time has the unit of time, the transformation
of collision times between two frames are

τ∗ = τ

(
u∞
l∞

)
.

Theoretically, there are only three independent units for a fluid dynamic
system. Under this unit system, the molecular energy, which is a variable
in a microscopic scale, can be expressed as a value on the order of 10−23

in the units of meter, second, and kilogram. Therefore, for the convenience
purpose, a new unit temperature is introduced. For example, in unit frame
(0), the unit of energy can be expressed as m0l

2
0/t20, which is defined again

as kT0, and k is a constant. The constant is more or less an exchange rate
if we define two money system, such as US dollar and Chinese Yuan. Then,
with the new unit temperature T0 we have l20/t20 = (k/m0)T0, and k/m0

can be defined as a new constant R.
Now we have two unit frames (0) and (1) with the units (l0, t0, m0, T0)

and (l1, t1, m1, T1), where T0 and T1 are temperatures in two frames.
Besides previous choices for the units transformation from ρ∞, u∞, l∞ to
ρ̂ = û = l̂ = 1, we now have an additional one,

T∞(T0) = T̂ (T1).

Similar, we can define the relation between T0 and T1 to make sure T̂ = 1.
As a result, the temperature transformation between unit frames is

T1 = T∞T0.

Then, for any temperature T is unit frame (0), it becomes T∗ in system (1),

T∗ = T
T0

T1
=

T

T∞
.

 D
ir

ec
t M

od
el

in
g 

fo
r 

C
om

pu
ta

tio
na

l F
lu

id
 D

yn
am

ic
s 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
O

N
G

 K
O

N
G

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 o
n 

03
/1

8/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



December 4, 2014 12:32 Direct Modeling for Computational Fluid Dynamics - 9in x 6in b1879-appA page 278

278 Direct Modeling for Computational Fluid Dynamics

Besides the values of flow variable transformation, the constants of
exchange rates, such as k and R in frame (0), will have different values
in frame (1). For example, based on the velocity square we have

RT∞

(
l20
t20

)
= R̂T̂

(
l21
t21

)
,

from which we have

R̂ = RT∞

(
l2∞
u2∞

1
l2∞

)
=

RT∞
u2∞

=
1

γM2∞
,

where the reference Mach number is defined as M∞ = u∞/
√

γRT∞. Even
though the universal constants can be different in different unit frames,
within the same unit frame, such as frame (1), the value of the universal
constant should keep the same value, such as

R∗ = R̂ = 1/(γM2
∞).

If k is the Boltzmann constant in unit frame (0), then the corresponding
value k∗ in unit frame (1) can be derived from

R∗ =
k∗
m∗

=
1

γM2∞
.

Since

m∗ =
m

ρ∞l3∞
,

we get

k∗ =
1

γM2∞

m

ρ∞l3∞
=

T∞
ρ∞l3∞u2∞

k.

After the definition of temperature, we can talk about the heat flux
−κ∇T and the heat conduction coefficient κ. In unit frame (0), the heat
conduction coefficient κ is defined as

κ =
µCp

Pr
=

µ

Pr
γ

γ − 1
R,

where the specific heat capacity at constant pressure is defined as Cp =
γR/(γ − 1). In unit frame (1), it becomes

κ∗ =
µ∗
Pr

γ

γ − 1
R∗ =

µ

µ∞
1

(γ − 1)PrReM2∞
.

In many cases, the above expression can be written as

κ∗ = µ̃
1

(γ − 1)PrReM2∞
,
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where µ̃ = µ/µ∞. Then, the heat flux in unit frame (1) is

�q∗ = −κ∗

(
∂T∗
∂x∗

+
∂T∗
∂y∗

+
∂T∗
∂z∗

)
,

and the stress terms, such as τxy, become

τ∗,xy =
1

Re

(
µ

µ∞

)(
∂u∗
∂y∗

+
∂v∗
∂x∗

)
.

All fluid dynamic equations, including the Boltzmann equation, can
be expressed in the same way in unit frame (0) and unit frame (1), but
with their own unit system. The connections between unit systems are
based on the choices of ρ∞, u∞, l∞, T∞ in unit frame (0), which have the
corresponding values ρ̂ = û = l̂ = T̂ = 1 in unit frame (1). This brings
great simplification in the computation in unit frame (1). This is only
one of the choices, which is mainly used in applications of aerospace flow
problems. Due to the freedom in choosing the units, sometimes it is much
more convenient to use kB → k̂ = 1, m → m̂ = 1, u∞ → û = 1, and
l∞ → l̂ = 1 to define a new unit system (1) in microflow applications. In
the cosmology study, it may become easy to use the speed of light ĉ = 1,
Planck constant �̂ = 1, and the mass of the electron m̂e = 1 to define the
unit frame (1).
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