Common Causes of Segmentation Faults (Segfaults)

A segmentation fault (often called a segfault) can occur if a program you are running attempts to access an
invalid memory location. When a segmentation fault occurs, the program will terminate abnormally with an
error similar to the following message:

SIGSEGV: Segmentation fault - invalid memory reference.
forrtl: severe (174): SIGSEGV, segmentation fault occurred

The program may generate a core file, which can help with debugging.

If you use an Intel compiler, and you include the —-g —traceback options, the runtime system will usually
point out the function and line number in your code where a segmentation fault occurred. However, the
location of the segmentation fault might not be the root problem& a segfault is often a symptom, rather than
the cause of a problem.

Common Segfault Scenarios

Common scenarios that can lead to segmentation faults include running out of stack space and issues
resulting from bugs in your code.

Running Out of Stack Space

Stack space is a segment of program memory that is typically used by temporary variables in the program's
subroutines and functions. Attempting to access a variable that resides beyond the stack space boundary will
cause segmentation faults.

The usual remedy is to increase the stack size and re-run your program. For example, to set the stack size to
unlimited, run:

For csh

unlimit stacksize
For bash
ulimit -s unlimited

On the Pleiades front-end nodes (PFEs), the default stack size is set to 300,000 kilobytes (KB). On the
compute nodes, PBS sets the stack size to unlimited. However, if you use ssh to connect from one
compute node to another (or several others) in order to run programs, then the stack size on the other node(s)
is set to 300,000 KB.

Note: Setting the stack size to unlimited on the PFEs might cause problems with Tecplot. For more
information, see Tecplot.

Bugs in Your Fortran Code
In Fortran programs, the most common bugs that cause segmentation faults are array bounds

violations&d attempts to write past the declared bounds of an array. Occasionally, uninitialized data can also
cause segmentation faults.

Array Bounds Violations

Common Causes of Segmentation Faults (Segfaults) 1

https://www.nas.nasa.gov/hecc/support/kb/tecplot_118.html

To find array bounds violations, re-run your code with the Intel ifort compiler using the —check (or —check
all) option in combination with your other compiler options. When you use the —check option, the Fortran
runtime library will flag occurrences of array bounds violations (and some other programming errors).

When the runtime library encounters the first array bounds violation, it will halt the program and provide an
error message indicating where the problem occurred. You may need to re-run the code multiple times if there
is more than one array bounds violation.

Note: Code compiled with the —check option may run significantly slower than code compiled with normal
optimization (without the —check option).

Uninitialized Variables

You can use the —init=keyword option (available in the 2015 Intel Fortran compiler and later versions) to
check uninitialized variables. The following keywords can be used with the —init option:

[no]arrays
Determines whether the compiler initializes variables that are arrays or scalars. Specifying arrays
initializes variables that are arrays or scalars. Specifying noarrays initializes only variables that are
scalars. You must also specify either init snan or init zero when you specify init
[no]arrays.

[no] snan
Determines whether the compiler initializes to signaling NaN all uninitialized variables of intrinsic type
REAL or COMPLEX that are saved, local, automatic, or allocated.

[no] zero
Determines whether the compiler initializes to zero all uninitialized variables of intrinsic type REAL,
COMPLEX, INTEGER, or LOGICAL that are saved, local, automatic, or allocated.

Note: The —init compiler option does not catch all possible uninitialized variables. To find more, you can use
the NAS-developed uninit tool. For information about using this tool, see the NAS training presentation

uninit: Locating Use of Uninitialized Data in Floating Point Computation in Big Applications.

For more information about segmentation faults, see:

¢ Determining Root Cause of Segmentation Faults SIGSEGV or SIGBUS errors (Intel Developer Zone)
e Segmentation Fault (Wikipedia)

Article ID: 524

Last updated: 14 Dec, 2015

Revision: 40

Porting/Building Code -> Optimizing/Troubleshooting -> Debugging -> Common Causes of Segmentation Faults (Segfaults)
https://www.nas.nasa.gov/hecc/support/kb/entry/524/

Common Causes of Segmentation Faults (Segfaults) 2

https://www.nas.nasa.gov/hecc/assets/pdf/training/UnInit_Fix_your_code_2012_10_31.pdf
https://software.intel.com/en-us/articles/determining-root-cause-of-sigsegv-or-sigbus-errors
https://en.wikipedia.org/wiki/Segmentation_fault
https://www.nas.nasa.gov/hecc/support/kb/entry/524/

	524.html

