
INTRODUCTION TO MPI –
MPI DATATYPES

Introduction to Parallel Computing with MPI
and OpenMP

18-19-20 november 2013

a.marani@cineca.it

g.muscianisi@cineca.it

l.ferraro@cineca.it

What are?
Derived datatypes are datatypes that are built from the basic MPI
datatypes (e.g. MPI_INT, MPI_REAL, …)

DERIVED DATATYPE

Why datatypes?
 Since all data is labeled by type, an MPI implementation can

support communication between processes on machines with
very different memory representations and lenghts of
elementary datatypes (heterogeneous communication)

 Specifying application-oriented layout of data in memory
can reduce memory-to memory copies in the implementaion
allows the use of special hardware (scatter/gather) when available

 Specifying application-oriented layout of data on a file can
reduce systems calls and physical disk I/O

You may need to send messages that contain:
1. non-contiguous data of a single type (e.g. a sub-block of a matrix)
2. contiguous data of mixed types (e.g., an integer count, followed by a sequence

of real numbers)
3. non-contiguous data of mixed types

DERIVED DATATYPE

Possible solutions:

1. make multiple MPI calls to send and receive each data element

 → If advantegeous, copy data to a buffer before sending it

2. use MPI_pack/MPI_Unpack to pack data and send packed data (datatype
MPI_PACKED)

3. use MPI_BYTE to get around the datatype-matching rules. Like
MPI_PACKED, MPI_BYTE can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that
contains this byte.

Additional latency costs due to multiple calls

Additional latency costs due to memory copy

Not portable to a heterogeneous system using MPI_BYTE or
MPI_PACKED

Datatype solution:
1. The idea of MPI derived datatypes is to provide a simple, portable, elegant

and efficient way of communicating non-contiguous or mixed types in a
message.
 During the communication, the datatype tells MPI system where to

take the data when sending or where to put data when receiving.
1. The actual performances depend on the MPI implementation
2. Derived datatypes are also needed for getting the most out of MPI-I/O.

DERIVED DATATYPE

A general datatype is an opaque object able to describe a buffer layout in memory by
specifing:

 A sequence of basic datatypes
 A sequence of integer (byte) displacements.

DEFINITION

Typemap = {(type 0, displ 0), … (type n-1, displ n-1)}

– pairs of basic types and displacements (in byte)

Type signature = {type 0, type 1, … type n-1}

– list of types in the typemap

– gives size of each elements

– tells MPI how to interpret the bits it sends and received

Displacement:

– tells MPI where to get (when sending) or put (when receiving)

Example:
Basic datatype are particular cases of a general datatype, and are
predefined:

 MPI_INT = {(int, 0)}

General datatype with typemap

 Typemap = {(int,0), (double,8), (char,16)}

int char

double
derived datatype

TYPEMAP

General datatypes (differently from C or Fortran) are created
(and destroyed) at run-time through calls to MPI library routines.

HOW TO USE

Implementation steps are:
1. Creation of the datatype from existing ones with a datatype constructor.

2. Allocation (committing) of the datatype before using it.

3. Usage of the derived datatype for MPI communications and/or for MPI-I/O

4. Deallocation (freeing) of the datatype after that it is no longer needed.

MPI_TYPE_COMMIT (datatype)
INOUT datatype: datatype that is committed (handle)

• Before it can be used in a communication or I/O call, each derived
datatype has to be committed

COMMITTING AND FREEING

MPI_TYPE_FREE (datatype)

INOUT datatype: datatype that is freed (handle)

Mark a datatype for deallocation

Datatype will be deallocated when all pending operations are finished

• MPI_TYPE_CONTIGOUS constructs a typemap consisting of the
replication of a datatype into contiguous locations.

• newtype is the datatype obtained by concatenating count copies
of oldtype.

MPI_TYPE_CONTIGUOUS (count, oldtype, newtype)
IN count: replication count (non-negative integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

MPI TYPE CONTIGUOUS

Example

MPI TYPE CONTIGUOUS

• Consists of a number of elements of the same datatype repeated
with a certain stride

MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)
IN count: Number of blocks (non-negative integer)
IN blocklen: Number of elements in each block

(non-negative integer)
IN stride: Number of elements (NOT bytes) between start of

each block (integer)
IN oldtype: Old datatype (handle)
OUT newtype: New datatype (handle)

MPI TYPE VECTOR

Example

• It’s identical to MPI_TYPE_VECTOR, except that stride is given in bytes,
rather than in elements

• “H” stands for heterogeneous

MPI_TYPE_CREATE_HVECTOR (count, blocklength, stride, oldtype, newtype)

IN count: Number of blocks (non-negative integer)

IN blocklen: Number of elements in each block (non-negative integer)

IN stride: Number of bytes between start of each block (integer)

IN oldtype: Old datatype (handle)
OUT newtype: New datatype (handle)

MPI TYPE HVECTOR

• Creates a new type from blocks comprising identical elements
• The size and displacements of the blocks can vary

MPI_TYPE_INDEXED (count, array_of_blocklengths, array_of_displacements,
 oldtype, newtype)

IN count: number of blocks – also number of entries in
 array_of_blocklenghts and array_of_displacements

(non-negative integer)
IN array_of_blocklengths: number of elements per block

(array of non-negative integers)
IN array_of_displacements: displacement for each block, in multiples of oldtype extent

 (array of integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

oldtype

newtype

count=3, array_of_blocklenghths=(/2,3,1/), array_of_displacements=(/0,3,8/)

MPI TYPE INDEXED

Example 1

! upper triangular matrix
real, dimension(100,100) :: a
integer, dimension(100) :: displ, blocklen
integer :: i, upper, ierr

! compute start and size of the rows
do i=1,100
 displ(i) = 100*i+i

 blocklen(i) = 100-i

end do

! create and commit a datatype for upper triangular matrix
CALL MPI_TYPE_INDEXED (100, blocklen, disp, MPI_DOUBLE, upper,ierr)
CALL MPI_TYPE_COMMIT (upper,ierr)
! … send it ...
CALL MPI_SEND (a, 1, upper, dest, tag, MPI_COMM_WORLD, ierr)
MPI_Type_free (upper, ierr)

MPI TYPE INDEXED
EXAMPLE (FORTRAN)

• This function is identical to MPI_TYPE_INDEXED, except that block
displacements in array_of_displacements are specified in bytes, rather
that in multiples of the oldtype extent

MPI_TYPE_CREATE_HINDEXED (count, array_of_blocklengths,
array_of_displacements, oldtype, newtype)

IN count: number of blocks – also number of entries in array_of_blocklengths and
array_of_displacements (non-negative integer)

IN array_of_blocklengths: number of elements in each block
(array of non-negative integers)

IN array_of_displacements: byte displacement of each block (array of integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

MPI TYPE HINDEXED

• Similar to MPI_TYPE_INDEXED, except that the block-length is the same for
all blocks.

• There are many codes using indirect addressing arising from unstructured
grids where the blocksize is always 1 (gather/scatter). This function allows
for constant blocksize and arbitrary displacements.

MPI_TYPE_CREATE_INDEXED_BLOCK (count, blocklengths,
array_of_displacements, oldtype, newtype)

IN count: length of array of displacements (non-negative integer)
IN blocklengths: size of block (non-negative integer)
IN array_of_displacements: array of displacements (array of integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

MPI TYPE INDEXED BLOCK

The subarray type constructor creates an MPI datatype describing an n
dimensional subarray of an n-dimensional array. The subarray may be
situated anywhere within the full array, and may be of any nonzero size up to
the size of the larger array as long as it is confined within this array.

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of_sizes, array_of_subsizes,
 array_of_starts, order, oldtype, newtype)

IN ndims: number of array dimensions (positive integer)
IN array_of_sizes: number of elements of type oldtype in each

dimension of the full array (array of positive integers)
IN array_of_subsizes: number of elements of type oldtype in each

dimension of the subarray (array of positive integers)
IN array_of_starts: starting coordinates of the subarray in each

dimension (array of non-negative integers)
IN order: array storage order flag

(state: MPI_ORDER_C or MPI_ORDER_FORTRAN)
IN oldtype: array element datatype (handle)
OUT newtype: new datatype (handle)

MPI TYPE SUBARRAY

double subarray[100][25];
MPI_Datatype filetype;
int sizes[2], subsizes[2], starts[2];
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

sizes[0]=100; sizes[1]=100;
subsizes[0]=100; subsizes[1]=25;
starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts,
MPI_ORDER_C, MPI_DOUBLE, &filetype);

MPI_Type_commit(&filetype);

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of_sizes,
array_of_subsizes, array_of_starts, order, oldtype, newtype)

MPI TYPE SUBARRAY
EXAMPLE (C)

The MPI datatype for structures – MPI_TYPE_CREATE_STRUCT – requires
dealing with memory addresses and further concepts:

Typemap: pairs of basic types and displacements

Extent: The extent of a datatype is the span from the lower to the upper
bound (including “holes”)

Size: The size of a datatype is the net number of bytes to be transferred
(without “holes”)

21

int char

derived datatypedouble

SIZE AND EXTENT

Basic datatypes:
• size = extent = number of bytes used by the compiler

Derived datatypes:
• extent include holes but...
• beware of the type vector: final holes are a figment of our imagination

• size = 6 x size of “old type”
• extent = 10 x extent of “old type”

old type

new type

22

SIZE AND EXTENT

• Returns the total number of bytes of the entry datatype

MPI_TYPE_GET_EXTENT (datatype, lb, extent)
IN datatype: datatype to get information on(handle)
OUT lb: lower bound of datatype (integer)
OUT extent: extent of datatype (integer)

MPI_TYPE_SIZE (datatype, size)
IN datatype: datatype (handle)

OUT size: datatype size (integer)

QUERY SIZE AND EXTENT
OF DATATYPE

• Returns the lower bound and the extent of the entry datatype

• Extent controls how a datatype is used with the count field in a send and
similar MPI operations

• Consider

• What actually gets sent?

where bufb is a byte type like integer*1

• extent is used to decide where to send from (or where to receive to in
MPI_Recv) for count>1
 Normally, this is right after the last byte used for (i-1)

call MPI_Send(buf,count,datatype,...)

do i=0,count-1
 call MPI_Send(bufb(1+i*extent(datatype)),1,datatype,...)
enddo

EXTENT

This subroutine returns a new datatype that represents count blocks. Each
block is defined by an entry in array_of_blocklengths,
array_of_displacements and array_of_types.

 Displacements are expressed in bytes (since the type can change!)
 To gather a mix of different datatypes scattered at many locations in space

into one datatype that can be used for the communication.

MPI_TYPE_CREATE_STRUCT (count, array_of_blocklengths,
 array_of_displacements, array_of_oldtypes, newtype)

 IN count: number of blocks (non-negative integer) -- also number of entries the following arrays
 IN array_of_blocklenghts: number of elements in each block

 (array of non-negative integer)
 IN array_of_displacements: byte displacement of each block

 (array of integer)
 IN array_of_oldtypes: type of elements in each block

(array of handles to datatype objects)
 OUT newtype: new datatype (handle)

MPI TYPE STRUCT

struct {
 float x, y, z, velocity;
 int n, type;
} Particle;

Particle particles[NELEM];

MPI_Type_struct (count, blockcounts, displ, oldtypes, &particletype);
MPI_Type_commit(&particletype);

f f f f i i f f f f i i… … …

MPI_Type_extent(MPI_FLOAT, &extent);

count = 2;
blockcounts[0] = 4; blockcount[1] = 2;
oldtypes[0]= MPI_FLOAT; oldtypes[1] = MPI_INT;
displ[0] = 0; displ[1] = 4*extent;

particles[NELEM]

USING EXTENT (NOT SAFE)

struct {
 float x, y, z, velocity;
 int n, type;
} Particle;

Particle particles[NELEM];

int count, blockcounts[2];
MPI_Aint displ[2];
MPI_Datatype particletype, oldtypes[2];

count = 2;
blockcounts[0] = 4; blockcount[1] = 2;
oldtypes[0]= MPI_FLOAT; oldtypes[1] = MPI_INT;

MPI_Type_extent(MPI_FLOAT, &extent);
displ[0] = 0; displ[1] = 4*extent;

MPI_Type_create_struct (count, blockcounts, displ,
oldtypes,
&particletype);

MPI_Type_commit(&particletype);

MPI_Send (particles, NELEM, particletype, dest, tag,

 MPI_COMM_WORLD);

MPI_Free(&particletype);

USING EXTENT (NOT SAFE)

 C struct may be automatically padded by the compiler, e.g.

 Using extents to handle structs is not safe! Get the addresses

 The address of the variable is returned, which can then be used to determine the
correct relative dispacements

 Using this function helps with portability

MPI_GET_ADDRESS (location, address)
IN location: location in caller memory (choice)
OUT address: address of location (integer)

struct mystruct {
 char a;
 char gap_0[3];
 int b;
 char c;
 char gap_1[3];
} x

struct mystruct {
 char a;
 int b;
 char c;
} x

USING EXTENT (NOT SAFE)

MPI_Datatype ParticleType;
int count = 3;
MPI_Datatype type[3] = {MPI_CHAR, MPI_DOUBLE,
MPI_INT};
int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3];

MPI_Get_address(&particle[0].class, &disp[0]);
MPI_Get_address(&particle[0].d, &disp[1]);
MPI_Get_address(&particle[0].b, &disp[2]);
/* Make displacements relative */
disp[2] -= disp[0]; disp[1] -= disp[0]; disp[0] = 0;

MPI_Type_create_struct (count, blocklen, disp, type,
&ParticleType);
MPI_Type_commit (&ParticleType);

MPI_Send(particle,100,ParticleType,dest,tag,comm);
MPI_Type_free (&ParticleType);

struct PartStruct {
 char class;

 double d[6];
 int b[7];

} particle[100];

USING DISPLACEMENTS

 According to the standard the memory layout of Fortran derived data is
much

 more liberal
 An array of types, may be implemented as 5 arrays of scalars!

 The memory layout is guaranteed using sequence or bind(C) type
attributes
 Or by using the (old style) commons...

 With Fortran 2003, MPI_Type_create_struct may be applied to common
blocks, sequence and bind(C) derived types
 it is implementation dependent how the MPI implementation computes

the alignments (sequence, bind(C) or other)
 The possibility of passing particles as a type depends on MPI

implementation: try particle%x and/or study the MPI standard and Fortran
2008 constructs

type particle
 sequence
 real :: x,y,z,velocity
 integer :: n
end type particle
type(particle) ::
particles(Np)

type particle
 real :: x,y,z,velocity
 integer :: n
end type particle
type(particle) ::
particles(Np)

FORTRAN TYPES

 Performance depends on the datatype – more general datatypes are
often slower

 some MPI implementations can handle important special cases: e.g., constant
stride, contiguous structures

 Overhead is potentially reduced by:

 Sending one long message instead of many small messages

 Avoiding the need to pack data in temporary buffers

 Some implementations are slow

PERFORMANCE

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31

