
PARALLEL I/OWITHMPI

March 14 2018 Benedikt Steinbusch Jülich Supercomputing Centre

Member of the Helmholtz Association

Part I: Introduction

Member of the Helmholtz Association

FEATURES OFMPI I/O

• Standardized I/O API since 1997
• Available in many MPI libraries
• Language bindings for C and Fortran
• Re-uses MPI’s concepts for the description of data
• Allows portable and efficient implementation of parallel I/O operations due to support
for

• multiple data representations
• asynchronous I/O
• non-contiguous file access patterns
• collective file access
• MPI Info Objects

Member of the Helmholtz Association March 14 2018 Slide 1

PREREQUISITES
You should be familiar with MPI, especially with

Processes and Ranks An MPI program is executed by multiple processes in
parallel. Processes are identified by ranks (0, 1, …)

Communicator Combines a group of processes and a context for
communication.

Blocking and Nonblocking Provide different guarantees to the user / different
liberties to the MPI library.

P2P and Collective Communication Communication among pairs or groups of processes
Derived Datatypes Descriptions of data layouts
MPI Info Objects Key-value maps that can be used to provide hints

Member of the Helmholtz Association March 14 2018 Slide 2

LITERATURE & ACKNOWLEDGEMENTS
Literature

• Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Version 3.1. June 4, 2015. URL:
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

• William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. Portable Parallel
Programming with the Message-Passing Interface. 3rd ed. The MIT Press, Nov. 2014.
336 pp. ISBN: 9780262527392

• William Gropp et al. Using Advanced MPI. Modern Features of the Message-Passing
Interface. 1st ed. Nov. 2014. 392 pp. ISBN: 9780262527637

• http://www.mpi-forum.org
Acknowledgements

• Rolf Rabenseifner for his comprehensive course on MPI and OpenMP
• Marc-André Hermanns, Florian Janetzko and Alexander Trautmann for their course
material on MPI and OpenMP

Member of the Helmholtz Association March 14 2018 Slide 3

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org

LANGUAGE BINDINGS [MPI-3.1, 17, A]
C Language Bindings

C #include <mpi.h>

Fortran Language Bindings

Consistent with F08 standard; good type-checking; highly recommended

F0
8 use mpi_f08

Not consistent with standard; so-so type-checking; not recommended

F9
0 use mpi

Not consistent with standard; no type-checking; strongly discouraged

F7
7 include 'mpif.h'

Member of the Helmholtz Association March 14 2018 Slide 4

FORTRAN HINTS [MPI-3.1, 17.1.2 – 17.1.4]
This course uses the Fortran 2008 MPI interface (use mpi_f08) which is not available in
all MPI implementations. The Fortran 90 bindings differ from the Fortran 2008 bindings in
the following points:

• All derived type arguments are instead integer (some are arrays of integer or
have a non-default kind)

• Argument intent is not mandated by the Fortran 90 bindings
• The ierror argument is mandatory instead of optional
• Further details can be found in [MPI-3.1, 17.1]

Member of the Helmholtz Association March 14 2018 Slide 5

Part II: File Operations

Member of the Helmholtz Association

FILE, FILE POINTER & HANDLE [MPI-3.1, 13.1]
File

An MPI file is an ordered collection of typed data items.

File Pointer

A file pointer is an implicit offset into a file maintained by MPI.

File Handle

An opaque MPI object. All operations on an open file reference the file through the file
handle.

Member of the Helmholtz Association March 14 2018 Slide 6

OPENING A FILE [MPI-3.1, 13.2.1]
C

int MPI_File_open(MPI_Comm comm, const char* filename,
int amode, MPI_Info info, MPI_File* fh)↪→

F0
8

MPI_File_open(comm, filename, amode, info, fh, ierror)
type(MPI_Comm), intent(in) :: comm
character(len=*), intent(in) :: filename
integer, intent(in) :: amode
type(MPI_Info), intent(in) :: info
type(MPI_File), intent(out) :: fh
integer, optional, intent(out) :: ierror

• Collective operation on communicator comm
• Filenamemust reference the same file on all processes
• Process-local files can be opened using MPI_COMM_SELF
• info object specifies additional information (MPI_INFO_NULL for empty)

Member of the Helmholtz Association March 14 2018 Slide 7

ACCESS MODE [MPI-3.1, 13.2.1]
amode denotes the access mode of the file andmust be the same on all processes. Itmust
contain exactly one of the following:
MPI_MODE_RDONLY read only access
MPI_MODE_RDWR read and write access
MPI_MODE_WRONLY write only access

andmay contain some of the following:
MPI_MODE_CREATE create the file if it does not exist
MPI_MODE_EXCL error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN file is not opened elsewhere
MPI_MODE_SEQUENTIAL access to the file is sequential
MPI_MODE_APPEND file pointers are set to the end of the file

Combine using bit-wise or (| operator in C, ior intrinsic in Fortran).

Member of the Helmholtz Association March 14 2018 Slide 8

CLOSING A FILE [MPI-3.1, 13.2.2]
C int MPI_File_close(MPI_File* fh)

F0
8

MPI_File_close(fh, ierror)
type(MPI_File), intent(out) :: fh
integer, optional, intent(out) :: ierror

• Collective operation
• User must ensure that all outstanding nonblocking and split collective operations
associated with the file have completed

Member of the Helmholtz Association March 14 2018 Slide 9

DELETING A FILE [MPI-3.1, 13.2.3]
C int MPI_File_delete(const char* filename, MPI_Info info)

F0
8

MPI_File_delete(filename, info, ierror)
character(len=*), intent(in) :: filename
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

• Deletes the file identified by filename
• File deletion is a local operation and should be performed by a single process
• If the file does not exist an error is raised
• If the file is opened by any process

• all further and outstanding access to the file is implementation dependent
• it is implementation dependent whether the file is deleted; if it is not, an error is raised

Member of the Helmholtz Association March 14 2018 Slide 10

FILE PARAMETERS
Setting File Parameters

MPI_File_set_size Set the size of a file [MPI-3.1, 13.2.4]
MPI_File_preallocate Preallocate disk space [MPI-3.1, 13.2.5]

MPI_File_set_info Supply additional information [MPI-3.1, 13.2.8]

Inspecting File Parameters

MPI_File_get_size Size of a file [MPI-3.1, 13.2.6]
MPI_File_get_amode Acess mode [MPI-3.1, 13.2.7]
MPI_File_get_group Group of processes that opened the file [MPI-3.1, 13.2.7]
MPI_File_get_info Additional information associated with the file [MPI-3.1,

13.2.8]

Member of the Helmholtz Association March 14 2018 Slide 11

I/O ERROR HANDLING [MPI-3.1, 8.3, 13.7]
Communication, by default, aborts the programwhen an error is encountered. I/O
operations, by default, return an error code.

C

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler
errhandler)↪→

F0
8

MPI_File_set_errhandler(file, errhandler, ierror)
type(MPI_File), intent(in) :: file
type(MPI_Errhandler), intent(in) :: errhandler
integer, optional, intent(out) :: ierror

• The default error handler for files is MPI_ERRORS_RETURN
• Success is indicated by a return value of MPI_SUCCESS
• MPI_ERRORS_ARE_FATAL aborts the program
• Can be set for each file individually or for all files by setting the error handler on
MPI_FILE_NULL

Member of the Helmholtz Association March 14 2018 Slide 12

FILE VIEW [MPI-3.1, 13.3]
File View

A file view determines what part of the contents of a file is visible to a process. It is
defined by a displacement (given in bytes) from the beginning of the file, an elementary
datatype and a file type. The view into a file can be changedmultiple times between
opening and closing.

File Types and Elementary Types are Data Types

• Can be predefined or derived
• The usual constructors can be used to create derived file types and elementary
types, e.g.

• MPI_Type_indexed,
• MPI_Type_create_struct,
• MPI_Type_create_subarray

• Displacements in their typemapmust be non-negative andmonotonically
nondecreasing

• Have to be committed before use

Member of the Helmholtz Association March 14 2018 Slide 13

DEFAULT FILE VIEW [MPI-3.1, 13.3]
When newly opened, files are assigned a default view that is the same on all processes:

• Zero displacement
• File contains a contiguous sequence of bytes
• All processes have access to the entire file

File 0: byte 1: byte 2: byte 3: byte ...

Process 0 0: byte 1: byte 2: byte 3: byte ...

Process 1 0: byte 1: byte 2: byte 3: byte ...

... 0: byte 1: byte 2: byte 3: byte ...

Member of the Helmholtz Association March 14 2018 Slide 14

ELEMENTARY TYPE [MPI-3.1, 13.3]
Elementary Type

An elementary type (or etype) is the unit of data contained in a file. Offsets are expressed
in multiples of etypes, file pointers point to the beginning of etypes. Etypes can be basic
or derived.

Changing the Elementary Type

E.g. etype = MPI_INT:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int 2: int 3: int ...

Process 1 0: int 1: int 2: int 3: int ...

... 0: int 1: int 2: int 3: int ...

Member of the Helmholtz Association March 14 2018 Slide 15

FILE TYPE [MPI-3.1, 13.3]
File Type

A file type describes an access pattern. It can contain either instances of the etype or
holes with an extent that is divisible by the extent of the etype.

Changing the File Type

E.g. Filetype0 = {(int, 0), (hole, 4), (hole, 8)}, Filetype1 = {(hole, 0), (int, 4), (hole, 8)},
…:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int ...

Process 1 0: int ...

... 0: int ...

Member of the Helmholtz Association March 14 2018 Slide 16

CHANGING THE FILE VIEW [MPI-3.1, 13.3]
C

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,
MPI_Datatype etype, MPI_Datatype filetype, const
char* datarep, MPI_Info info)

↪→

↪→

F0
8

MPI_File_set_view(fh, disp, etype, filetype, datarep,
info, ierror)↪→

type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: disp
type(MPI_Datatype), intent(in) :: etype, filetype
character(len=*), intent(in) :: datarep
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

• Collective operation
• datarep and extent of etypemust match
• disp, filetype and info can be distinct
• File pointers are reset to zero
• May not overlap with nonblocking or split collective operations

Member of the Helmholtz Association March 14 2018 Slide 17

DATA REPRESENTATION [MPI-3.1, 13.5]

• Determines the conversion of data in memory to data on disk
• Influences the interoperability of I/O between heterogeneous parts of a system or
different systems

"native"
Data is stored in the file exactly as it is in memory

+ No loss of precision
+ No overhead
- On heterogeneous systems loss of transparent interoperability

Member of the Helmholtz Association March 14 2018 Slide 18

DATA REPRESENTATION [MPI-3.1, 13.5]
"internal"
Data is stored in implementation-specific format

+ Can be used in a homogeneous and heterogeneous environment
+ Implementation will perform conversions if necessary
- Can incur overhead
- Not necessarily compatible between different implementations

"external32"
Data is stored in standardized data representation (big-endian IEEE)

+ Can be read/written also by non-MPI programs
- Precision and I/O performance may be lost due to type conversions between
native and external32 representations

- Not available in all implementations

Member of the Helmholtz Association March 14 2018 Slide 18

DATA ACCESS
Three orthogonal aspects
1. Synchronism

1. Blocking
2. Nonblocking
3. Split collective

2. Coordination
1. Noncollective
2. Collective

3. Positioning
1. Explicit offsets
2. Individual file pointers
3. Shared file pointers

POSIX read() and write()

These are blocking, noncollective
operations with individual file pointers.

Member of the Helmholtz Association March 14 2018 Slide 19

SYNCHRONISM
Blocking I/O

Blocking I/O routines do not return before the operation is completed.

Nonblocking I/O

• Nonblocking I/O routines do not wait for the operation to finish
• A separate completion routine is necessary [MPI-3.1, 3.7.3, 3.7.5]
• The associated buffers must not be used while the operation is in flight

Split Collective

• ”Restricted” form of nonblocking collective
• Buffers must not be used while in flight
• Does not allow other collective accesses to the file while in flight
• begin and endmust be used from the same thread

Member of the Helmholtz Association March 14 2018 Slide 20

COORDINATION
Noncollective

The completion depends only on the activity of the calling process.

Collective

• Completion may depend on activity of other processes
• Opens opportunities for optimization

Member of the Helmholtz Association March 14 2018 Slide 21

POSITIONING [MPI-3.1, 13.4.1 – 13.4.4]
Explicit Offset

• No file pointer is used
• File position for access is given directly as function argument

Individual File Pointers

• Each process has its own file pointer
• After access, pointer is moved to first etype after the last one accessed

Shared File Pointers

• All processes share a single file pointer
• All processes must use the same file view
• Individual accesses appear as if serialized (with an unspecified order)
• Collective accesses are performed in order of ascending rank

Member of the Helmholtz Association March 14 2018 Slide 22

coordination

positioning synchronism noncollective collective

explicit offsets

blocking
MPI_File_read_at MPI_File_read_at_all
MPI_File_write_at MPI_File_write_at_all

nonblocking
MPI_File_iread_at MPI_File_iread_at_all
MPI_File_iwrite_at MPI_File_iwrite_at_all

split collective N/A

MPI_File_read_at_all_begin
MPI_File_read_at_all_end
MPI_File_write_at_all_begin
MPI_File_write_at_all_end

individual file pointers

blocking
MPI_File_read MPI_File_read_all
MPI_File_write MPI_File_write_all

nonblocking
MPI_File_iread MPI_File_iread_all
MPI_File_iwrite MPI_File_iwrite_all

split collective N/A

MPI_File_read_all_begin
MPI_File_read_all_end
MPI_File_write_all_begin
MPI_File_write_all_end

shared file pointers

blocking
MPI_File_read_shared MPI_File_read_ordered
MPI_File_write_shared MPI_File_write_ordered

nonblocking
MPI_File_iread_shared

N/A
MPI_File_iwrite_shared

split collective N/A

MPI_File_read_ordered_begin
MPI_File_read_ordered_end
MPI_File_write_ordered_begin
MPI_File_write_ordered_end

WRITING
blocking, noncollective, explicit offset [MPI-3.1, 13.4.2]

C

int MPI_File_write_at(MPI_File fh, MPI_offset offset,
const void* buf, int count, MPI_Datatype datatype,
MPI_Status *status)

↪→

↪→

F0
8

MPI_File_write_at(fh, offset, buf, count, datatype,
status, ierror)↪→

type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
integer, optional, intent(out) :: ierror

• Starting offset for access is explicitly given
• No file pointer is updated
• Writes count elements of datatype frommemory starting at buf
• Typesig(datatype) = Typesig(etype) . . . Typesig(etype)
• Writing past end of file increases the file size

Member of the Helmholtz Association March 14 2018 Slide 24

EXAMPLE
blocking, noncollective, explicit offset [MPI-3.1, 13.4.2]

Process 0 calls MPI_File_write_at(offset = 1, count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association March 14 2018 Slide 25

WRITING
blocking, noncollective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_write(MPI_File fh, const void* buf, int
count, MPI_Datatype datatype, MPI_Status* status)↪→

F0
8

MPI_File_write(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• Starts writing at the current position of the individual file pointer
• Moves the individual file pointer by the count of etypeswritten

Member of the Helmholtz Association March 14 2018 Slide 26

EXAMPLE
blocking, noncollective, individual [MPI-3.1, 13.4.3]

With its file pointer at element 1, process 1 writes count = 2:

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association March 14 2018 Slide 27

WRITING
nonblocking, noncollective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_iwrite(MPI_File fh, const void* buf, int
count, MPI_Datatype datatype, MPI_Request* request)↪→

F0
8

MPI_File_iwrite(fh, buf, count, datatype, request,
ierror)↪→

type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

• Starts the same operation as MPI_File_write but does not wait for completion
• Returns a request object that is used to complete the operation

Member of the Helmholtz Association March 14 2018 Slide 28

WRITING
blocking, collective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_write_all(MPI_File fh, const void* buf, int
count, MPI_Datatype datatype, MPI_Status* status)↪→

F0
8

MPI_File_write_all(fh, buf, count, datatype, status,
ierror)↪→

type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• Same signature as MPI_File_write, but collective coordination
• Each process uses its individual file pointer
• MPI can use communication between processes to funnel I/O

Member of the Helmholtz Association March 14 2018 Slide 29

EXAMPLE
blocking, collective, individual [MPI-3.1, 13.4.3]

• With its file pointer at element 1, process 0 writes count = 1,
• With its file pointer at element 0, process 1 writes count = 2,
• With its file pointer at element 2, process 2 writes count = 0:

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association March 14 2018 Slide 30

WRITING
split-collective, individual [MPI-3.1, 13.4.5]

C

int MPI_File_write_all_begin(MPI_File fh, const void* buf,
int count, MPI_Datatype datatype)↪→

F0
8

MPI_File_write_all_begin(fh, buf, count, datatype,
ierror)↪→

type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
integer, optional, intent(out) :: ierror

• Same operation as MPI_File_write_all, but split-collective
• status is returned by the corresponding end routine

Member of the Helmholtz Association March 14 2018 Slide 31

WRITING
split-collective, individual [MPI-3.1, 13.4.5]

C

int MPI_File_write_all_end(MPI_File fh, const void* buf,
MPI_Status* status)↪→

F0
8

MPI_File_write_all_end(fh, buf, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• buf argument must match corresponding begin routine

Member of the Helmholtz Association March 14 2018 Slide 32

EXAMPLE
blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
• process 0 writes count = 3,
• process 2 writes count = 2:

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

Member of the Helmholtz Association March 14 2018 Slide 33

EXAMPLE
blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
• process 0 writes count = 3,
• process 2 writes count = 2:

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

Member of the Helmholtz Association March 14 2018 Slide 33

EXAMPLE
blocking, collective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
• process 0 writes count = 1,
• process 1 writes count = 2,
• process 2 writes count = 3:

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

Member of the Helmholtz Association March 14 2018 Slide 34

READING
blocking, noncollective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_read(MPI_File fh, void* buf, int count,
MPI_Datatype datatype, MPI_Status* status)↪→

F0
8

MPI_File_read(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• Starts reading at the current position of the individual file pointer
• Reads up to count elements of datatype into the memory starting at buf
• status indicates howmany elements have been read
• If status indicates less than count elements read, the end of file has been reached

Member of the Helmholtz Association March 14 2018 Slide 35

FILE POINTER POSITION [MPI-3.1, 13.4.3]
C

int MPI_File_get_position(MPI_File fh, MPI_Offset*
offset)↪→

F0
8

MPI_File_get_position(fh, offset, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(out) :: offset
integer, optional, intent(out) :: ierror

• Returns the current position of the individual file pointer in units of etype
• Value can be used for e.g.

• return to this position (via seek)
• calculate a displacement

• MPI_File_get_position_shared queries the position of the shared file pointer

Member of the Helmholtz Association March 14 2018 Slide 36

SEEKING TO A FILE POSITION [MPI-3.1, 13.4.3]
C

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int
whence)↪→

F0
8

MPI_File_seek(fh, offset, whence, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
integer, intent(in) :: whence
integer, optional, intent(out) :: ierror

• whence controls how the file pointer is moved:
• MPI_SEEK_SET sets the file pointer to offset
• MPI_SEEK_CUR offset is added to the current value of the pointer
• MPI_SEEK_END offset is added to the end of the file

• offset can be negative but the resulting position may not lie before the beginning of
the file

• MPI_File_seek_sharedmanipulates the shared file pointer

Member of the Helmholtz Association March 14 2018 Slide 37

CONVERTING OFFSETS [MPI-3.1, 13.4.3]
C

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset
offset, MPI_Offset* disp)↪→

F0
8

MPI_File_get_byte_offset(fh, offset, disp, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
integer(kind=MPI_OFFSET_KIND), intent(out) :: disp
integer, optional, intent(out) :: ierror

• Converts a view relative offset (in units of etype) into a displacement in bytes from the
beginning of the file

Member of the Helmholtz Association March 14 2018 Slide 38

CONSISTENCY [MPI-3.1, 13.6.1]
Sequential Consistency

If a set of operations is sequentially consistent, they behave as if executed in some serial
order. The exact order is unspecified.

• To guarantee sequential consistency, certain requirements must be met
• Requirements depend on access path and file atomicity

Result of operations that are not sequentially consistent is implementation dependent.

Member of the Helmholtz Association March 14 2018 Slide 39

ATOMIC MODE [MPI-3.1, 13.6.1]
Requirements for sequential consistency

Same file handle: always sequentially consistent
File handles from same open: always sequentially consistent
File handles from different open: not influenced by atomicity, see nonatomic mode

• Atomic mode is not the default setting
• Can lead to overhead, because MPI library has to uphold guarantees in general case

C int MPI_File_set_atomicity(MPI_File fh, int flag)

F0
8

MPI_File_set_atomicity(fh, flag, ierror)
type(MPI_File), intent(in) :: fh
logical, intent(in) :: flag
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 14 2018 Slide 40

NONATOMIC MODE [MPI-3.1, 13.6.1]
Requirements for sequential consistency

Same file handle: operations must be either nonconcurrent, nonconflicting, or both
File handles from same open: nonconflicting accesses are sequentially consistent,
conflicting accesses have to be protected using MPI_File_sync
File handles from different open: all accessesmust be protected usingMPI_File_sync

Conflicting Accesses

Two accesses are conflicting if they touch overlapping parts of a file and at least one is
writing.

C int MPI_File_sync(MPI_File fh)

F0
8

MPI_File_sync(fh, ierror)
type(MPI_File), intent(in) :: fh
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 14 2018 Slide 41

NONATOMIC MODE [MPI-3.1, 13.6.1]
The Sync-Barrier-Sync construct

C

// writing access
sequence through one
file handle

↪→

↪→

MPI_File_sync(fh0);
MPI_Barrier(

MPI_COMM_WORLD);↪→

MPI_File_sync(fh0);
// ...

C

// ...
MPI_File_sync(fh1);
MPI_Barrier(

MPI_COMM_WORLD);↪→

MPI_File_sync(fh1);
// access sequence to

the same file
through a different
file handle

↪→

↪→

↪→

• MPI_File_sync is used to delimit sequences of accesses through different file
handles

• Sequences that contain a write access may not be concurrent with any other access
sequence

Member of the Helmholtz Association March 14 2018 Slide 41

EXERCISES
Ex
er
ci
se

1
–
Da

ta
Ac
ce
ss

1.1 Writing and Reading Data

Write a program:
• Each process writes its own rank to the common file rank.dat
• The ranks should be in order in the file 0 . . . n− 1

• Process 0 reads the whole file and prints the contents to screen

1.2 Accessing Parts of Files

Take the file rank.dat from the previous exercise
• The processes read the integers in the file in reverse order, i.e. process 0 reads
the last entry, process 1 reads the one before, …

• Each process prints its rank and the integer it read to the screen
Careful: This programmight be run on a different number of processes

Member of the Helmholtz Association March 14 2018 Slide 42

Part III: The Info Object

Member of the Helmholtz Association

THE INFO OBJECT [MPI-3.1, 9]
A Gentle Reminder

Used to pass hints for optimization to MPI
• Consists of (key, value) pairs, where both key and value are strings
• Each keymust appear only once
• MPI_INFO_NULL can be used in place of an actual info object
• Keys must not be larger than MPI_MAX_INFO_KEY
• Values must not be larger than MPI_MAX_INFO_VAL

Info Object API

MPI_Info_create, MPI_Info_dup, MPI_Info_free,
MPI_Info_set, MPI_Info_delete,
MPI_Info_get, MPI_Info_get_valuelen, MPI_Info_get_nkeys,
MPI_Info_get_nthkey

Member of the Helmholtz Association March 14 2018 Slide 43

INFO OBJECTS FOR I/O [MPI-3.1, 13.2, 13.2]
Info objects can be associated with files that MPI I/O operates on using several mechanisms:

• When opening a file: the info object is passed to the MPI_File_open routine
• While the file is open:

• When setting a file view using MPI_File_set_view
• Explicitly using MPI_File_set_info

• When deleting a file using MPI_File_delete
• Globally using a ROMIO hint file

Some info items can only be reasonably used e.g. when opening a file and will be ignored
when later used with MPI_File_set_info.

Member of the Helmholtz Association March 14 2018 Slide 44

FILE INFO OBJECT ACCESSORS [MPI-3.1, 13.2.8]
C int MPI_File_set_info(MPI_File fh, MPI_Info info)

F0
8

MPI_File_set_info(fh, info, ierror)
type(MPI_File), intent(in) :: fh
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

C int MPI_File_get_info(MPI_File fh, MPI_Info* info)

F0
8

MPI_File_get_info(fh, info, ierror)
type(MPI_File), intent(in) :: fh
type(MPI_Info), intent(out) :: info
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 14 2018 Slide 45

PASSING HINTS USING A FILE
Specify Hint File via Environment Variable
$ export ROMIO_HINTS=<absolute path>/hintfile

• Environment variable must be exported to the compute nodes. Use appropriate
mechanisms provided by process starters like mpiexec or runjob.

• Hints are used for all MPI I/O operations in the application through
• direct use of MPI I/O routines
• use of libraries that use MPI I/O

Example Hint File Content
collective buffering true
cb_buffer_size 33554432
cb_block_size 4194304

Member of the Helmholtz Association March 14 2018 Slide 46

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]

• An MPI implementation is not required to support these hints
• If a hint is supported by an implementation, it must behave as described by the
standard

• Additional keys may be supported

Member of the Helmholtz Association March 14 2018 Slide 47

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
filename: string implementation dependent

Can be used to inspect the file name of an open file.

file_perm: string same, implementation dependent

Specifies the file permissions to set on file creation.

access_style: [string] comma separated

Specifies the manner in which the file will be accessed until it is closed or this info key is
changed. Valid list elements are:

• read_once
• write_once
• read_mostly
• write_mostly

• sequential
• reverse_sequential
• random

Member of the Helmholtz Association March 14 2018 Slide 47

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
nb_proc: integer same

Specifies howmany parallel processes usually run the application that accesses this file.

num_io_nodes: integer same

Specifies the number of I/O devices in the system.

io_node_list: [string] comma separated, same, implementation dependent

Specifies a list of I/O devices that should be used to store the file.

Member of the Helmholtz Association March 14 2018 Slide 47

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
chunked: [integer] comma separated, same

Specifies that the file consists of a multidimensional array that is often accessed by
subarrays. List entries are array dimensions in order of decreasing significance.

chunked_item: [integer] comma separated, same

Specifies the size of one array entry in bytes.

chunked_size: [integer] comma separated, same

Specifies the dimensions of the subarrays.

Member of the Helmholtz Association March 14 2018 Slide 47

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
collective_buffering: boolean same

Specifies whether the application may benefit from collective buffering.

cb_nodes: integer same

Specifies the number of target nodes to be used for collective buffering.

cb_block_size: integer same

Specifies the block size to be used for collective buffering. Data access happens in
chunks of this size.

cb_buffer_size: integer same

Specifies the size of the buffer space that can be used on each target node.

Member of the Helmholtz Association March 14 2018 Slide 47

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
striping_factor: integer same

Specifies the number of I/O devices that the file should be striped across. Relevant only
on file creation.

striping_unit: integer same

Specifies the striping unit – the amount of consecutive data assigned to one I/O device –
to be used for this file. Only relevant on file creation.

Member of the Helmholtz Association March 14 2018 Slide 47

GOOD CHOICES FOR GPFS
romio_ds_write: string default: automatic

Specifies whether to use data sieving for write access. Good choice: enable

romio_ds_read: string default: automatic

Specifies whether to use data sieving for read access. Good choice: automatic

cb_buffer_size: integer default: 16777216

Specifies the size of the buffer space that can be used on each target node. Good choice:
33554432

• Default keys already seem to be a good setting
• Collective buffering is switched on by default (collective_buffering is ignored, but
romio_cb_read/romio_cb_write are available)

• Data sieving is only important for writing with shared file pointers and for small amounts of data.
• cb_nodes is set automatically and cannot be changed by the user

Member of the Helmholtz Association March 14 2018 Slide 48

Part IV: Best Practices

Member of the Helmholtz Association

GENERAL NOTES
• Choose the file systemwith the best performance

• Check file system documentation of HPC centre
• For JSC:

• $WORK is much faster than $HOME
• Use $WORK for I/O, $HOME for storage of executables, setups

• Avoid I/O, recalculate if it is faster to do so
• Avoid frequent I/O
• Reduce data/accuracy if possible
• Avoid random access patterns
• Write in large chunks with contiguous data
• Avoid explicit buffer flushes (MPI_File_sync)
• Use proper mode for opening files (e.g. read only if data is only read)
• Give proper hints to MPI via info objects

Member of the Helmholtz Association March 14 2018 Slide 49

GOOD STRATEGIES FOR GPFS (ON JUQUEEN)
Writing

MPI I/O routines Individual file pointers, collective (e.g.
MPI_File_write_all)

MPI I/O hints Default values
Environment export BGLOCKLESSMPIO_F_TYPE=0x47504653 runjob

--env-exp BGLOCKLESSMPIO_F_TYPE

Reading

MPI I/O routines Individual file pointers, collective (e.g. MPI_File_read_all)
MPI I/O hints Default values, or for small amounts of data romio_ds_write

= enable and cb_buffer_size = 33554432
Environment Do not set BGLOCKLESSMPIO_F_TYPE

Member of the Helmholtz Association March 14 2018 Slide 50

GOOD STRATEGIES FOR GPFS (ON JUQUEEN)
Shared File Pointers

MPI I/O routines MPI_File_write_ordered, …
MPI I/O hints romio_ds_write = enable, cb_buffer_size =

33554432, (16777216 for reading)
Environment –

Explicit offsets

MPI I/O routines MPI_File_write_at_all, …
MPI I/O hints romio_ds_write = enable, cb_buffer_size =

33554432
Environment export BGLOCKLESSMPIO_F_TYPE=0x47504653 runjob

--env-exp BGLOCKLESSMPIO_F_TYPE

Member of the Helmholtz Association March 14 2018 Slide 50

Part V: Mandelbrot Example

Member of the Helmholtz Association

SUBARRAY DATA [MPI-3.1, 4.1.3]
C

int MPI_Type_create_subarray(int ndims, const int
array_of_sizes[], const int array_of_subsizes[],
const int array_of_starts[], int order, MPI_Datatype
oldtype, MPI_Datatype* newtype)

↪→

↪→

↪→

F0
8

MPI_Type_create_subarray(ndims, array_of_sizes,
array_of_subsizes, array_of_starts, order, oldtype,
newtype, ierror)

↪→

↪→

integer, intent(in) :: ndims, array_of_sizes(ndims),
array_of_subsizes(ndims), array_of_starts(ndims),
order

↪→

↪→

type(MPI_Datatype), intent(in) :: oldtype
type(MPI_Datatype), intent(out) :: newtype
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 14 2018 Slide 51

EXAMPLE
C

ndims = 2;
array_of_sizes[] = { 4, 9 };
array_of_subsizes[] = { 2, 3 };
array_of_starts[] = { 0, 3 };
order = MPI_ORDER_C;
oldtype = MPI_INT;

An array with global size 4× 9 containing a subarray of size 2× 3 at offsets 0, 3:

Member of the Helmholtz Association March 14 2018 Slide 52

EXAMPLE
F0
8

ndims = 2
array_of_sizes(:) = (/ 4, 9 /)
array_of_subsizes(:) = (/ 2, 3 /)
array_of_starts(:) = (/ 0, 3 /)
order = MPI_ORDER_FORTRAN
oldtype = MPI_INTEGER

An array with global size 4× 9 containing a subarray of size 2× 3 at offsets 0, 3:

Member of the Helmholtz Association March 14 2018 Slide 52

COMMIT & FREE [MPI-3.1, 4.1.9]
Before using a derived datatype in communication it needs to be committed

C int MPI_Type_commit(MPI_Datatype* datatype)

F0
8

MPI_Type_commit(datatype, ierror)
type(MPI_Datatype), intent(inout) :: datatype
integer, optional, intent(out) :: ierror

Marking derived datatypes for deallocation

C int MPI_Type_free(MPI_Datatype *datatype)

F0
8

MPI_Type_free(datatype, ierror)
type(MPI_Datatype), intent(inout) :: datatype
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association March 14 2018 Slide 53

EXERCISES
Ex
er
ci
se

2
–
M
an

de
lb
ro
tS

et
2.1 Open and Close

Implement a solution for the static decomposition (type == 1) of the Mandelbrot
set example in the file mandelmpiio.c or mandelmpiio.f90. Begin by adding
appropriate invocations of MPI_File_open and MPI_File_close.

2.2 File View

Next, construct an MPI datatype (MPI_Type_create_subarray) that matches
the decomposition type and set a File View accordingly (MPI_File_set_view).

2.3 Write Access

Write to the file using collective routines with individual file pointers
(e.g. MPI_File_write_all).

Example mandelmpi Invocation
$ mandelmpi -t 1 -f 2 # static decomposition, MPI I/O format

Member of the Helmholtz Association March 14 2018 Slide 54

Part VI: MPI Blue Gene/Q Extensions

Member of the Helmholtz Association

BLUE GENE/Q: I/O NODE CABLING

©IBM 2012

Member of the Helmholtz Association March 14 2018 Slide 55

BLUE GENE/QMPI EXTENSIONS
IBM offers extensions to the MPI standard for Blue Gene/Q

• Not part of the MPI standard
• C and Fortran 77 interface for functions
• Functions start with MPIX_ instead of MPI_
• Only those extensions related to I/O are discussed here

Overview over all available extensions:
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUQUEEN/UserInfo/MPIextensions.html

C #include <mpix.h>

F0
8 use mpi

F7
7 include 'mpif.h'

Member of the Helmholtz Association March 14 2018 Slide 56

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/UserInfo/MPIextensions.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/UserInfo/MPIextensions.html

PARTITIONING COMM_WORLD ALONG I/O NODES
C

int MPIX_Pset_diff_comm_create(MPI_Comm* pset_comm)
int MPIX_Pset_same_comm_create(MPI_Comm* pset_comm)

F0
8

MPIX_Pset_diff_comm_create(pset_comm, ierror)
MPIX_Pset_same_comm_create(pset_comm, ierror)
integer:: pset_comm, ierror

• Collective operation on MPI_COMM_WORLD
• The resulting communicator contains processes which run on nodes associated with
different/the same I/O nodes

Member of the Helmholtz Association March 14 2018 Slide 57

GENERAL PARTITIONING ALONG I/O NODES
C

int MPIX_Pset_diff_comm_create_from_parent(MPI_Comm
parent_comm, MPI_Comm* pset_comm)↪→

int MPIX_Pset_same_comm_create_from_parent(MPI_Comm
parent_comm, MPI_Comm* pset_comm)↪→

F0
8

MPIX_Pset_diff_comm_create_from_parent(parent_comm,
pset_comm, ierror)↪→

MPIX_Pset_same_comm_create_from_parent(parent_comm,
pset_comm, ierror)↪→

integer:: parent_comm, pset_comm, ierror

Like MPIX_Pset_diff_comm_create and MPIX_Pset_same_comm_create but
works on arbitrary communicator parent_comm.

Member of the Helmholtz Association March 14 2018 Slide 58

I/O NODE PROPERTIES
C int MPIX_IO_node_id()

F0
8

MPIX_IO_node_id(io_node_id)
integer:: io_node_id

Returns the ID of the I/O node associated with the node that the current process is running
on.

C int MPIX_IO_link_id()

F0
8

MPIX_IO_link_id(io_link_id)
integer :: io_link_id

Returns the ID of the link to the associated I/O node.

No ierror argument on Fortran routines.

Member of the Helmholtz Association March 14 2018 Slide 59

DISTANCE TO I/O NODE
C int MPIX_IO_distance()

F0
8

MPIX_IO_distance(io_distance)
integer :: io_distance

Returns the distance to the associated I/O node in number of network hops.

No ierror argument on Fortran routines.

Member of the Helmholtz Association March 14 2018 Slide 60

	Introduction
	File Operations
	File Manipulation
	File Views
	Data Access
	Consistency
	Exercises

	The Info Object
	Best Practices
	Mandelbrot Example
	MPI Blue Gene/Q Extensions

